On \((h, k)\)-trichotomy for evolution operators in Banach spaces

Monteola Ilona Kovács (Timișoara)
Raluca Retezan (Timișoara)

Abstract. The paper considers three general trichotomy concepts, which are generalizations of the classical exponential and polynomial trichotomies. Characterizations and connections between these concepts are given.

Key Words: Evolution operators, \((h,k)\)trichotomy, strong \((h,k)\)-trichotomy, weak \((h,k)\)-trichotomy

MSC 2000: 34D05, 34D09

1 Introduction

As natural generalizations of the dichotomy properties, the concepts of trichotomy introduced by R. J. Sacker and G. R. Sell in [15] play a crucial role in the qualitative theory of dynamical systems. The first studies devoted to the trichotomic behaviors for differential equations were initiated by S.
Elaydi and O. Hayek in [4] and [5].

In the last decades, a substantial part of the asymptotic theory of differential equations was devoted to the extension of the methods used in dichotomy theory to the trichotomy case (see [7], [8], [9], [12], [13], [14]). Characterizations for the uniform exponential trichotomy of evolution operators in Banach spaces was obtained by M. Megan and C. Stoica in [10], [11] and M. I. Kovács in [6].

In the nonautonomous setting the concept of uniform exponential (or polynomial) trichotomy is too restrictive and it is important to look for more general behaviors, for example the nonuniform case, where a consistent contribution is due to L. Barreira and C. Valls (see [1], [2], [3]).

A new perspective on the discrete input-output techniques in the detection of the trichotomic behavior of nonautonomous dynamical systems is presented by B. Sasu and A.L. Sasu in [16].

This paper considers three general trichotomy concepts with growth rates given by increasing functions. These new trichotomies include the traditional (uniform or nonuniform) exponential or polynomial trichotomy. Thus we obtain a systematic classification of trichotomy concepts with the connections between them.

2 Definitions, notations and preliminary results

Let X be a real or complex Banach space and let $B(X)$ be the algebra Banach of all bounded linear operators on X. The norm on X and on $B(X)$ will be denoted by $\| \cdot \|$. Denote by I the identity operator on X.

Let Δ be the set of all pairs (t, s) of real numbers with $t \geq s \geq 0$. We denote by $T = \Delta \times X$.

In this section we give some preliminary definitions.

Definition 2.1 An operator valued function $U : \Delta \to B(X)$ is said to be an evolution operator on X if

(e_1) $U(t, t) = I$ for every $t \geq 0$;

(e_2) $U(t, s)U(s, t_0) = U(t, t_0)$ for all $(t, s) \in \Delta$ and $(s, t_0) \in \Delta$.

If the condition (e_2) holds for all $t, s, t_0 \geq 0$ then we say that U is a reversible evolution operator.
Definition 2.2 An operator valued function $P : \mathbb{R}_+ \to \mathcal{B}(X)$ is called a family of projections on X if

$$P(t)^2 = P(t), \quad \text{for every } t \geq 0.$$

Definition 2.3 Given an evolution operator $U : \Delta \to \mathcal{B}(X)$, we say that a family of projections $P : \mathbb{R}_+ \to \mathcal{B}(X)$ is invariant for U if

$$P(t)U(t, s) = U(t, s)P(s)$$

for all $(t, s) \in \Delta$.

Definition 2.4 Three families of projections $P_1, P_2, P_3 : \mathbb{R}_+ \to \mathcal{B}(X)$ are called supplementary if for every $t \in \mathbb{R}_+$ we have

1. $P_1(t) + P_2(t) + P_3(t) = I$;
2. $P_i(t)P_j(t) = 0$ for all $i, j \in \{1, 2, 3\}$ with $i \neq j$.

If $\mathcal{P} = \{P_1, P_2, P_3\}$ is a family of three supplementary projections which are invariant for U, then we say that the pair (U, \mathcal{P}) is a trichotomic pair.

Definition 2.5 Let $P : \mathbb{R}_+ \to \mathcal{B}(X)$ be a family of projections on X which is invariant for the evolution operator $U : \Delta \to \mathcal{B}(X)$. We say that P is strongly invariant for U if for all $(t, s) \in \Delta$ the restriction of $U(t, s)$ on $\text{Range}P(s)$ is an isomorphism from $\text{Range}P(s)$ to $\text{Range}P(t)$.

Remark 2.1 If a family of projections $P : \mathbb{R}_+ \to \mathcal{B}(X)$ is strongly invariant for the evolution operator $U : \Delta \to \mathcal{B}(X)$ then there exists $V : \Delta \to \mathcal{B}(X)$ such that $V(t, s)$ is an isomorphism from $\text{Range}P(t)$ to $\text{Range}P(s)$ and

1. $U(t, s)V(t, s)P(t) = P(t)$;
2. $V(t, s)U(t, s)P(s) = P(s)$,

for all $(t, s) \in \Delta$.

The map V is called the skew-evolution operator associated to the pair (U, \mathcal{P}).
Definition 2.6 A family $\mathcal{P} = \{P_1, P_2, P_3\}$ of three supplementary projections is called compatible with the evolution operator $U : \Delta \to B(X)$ if

1. P_1 is invariant for U;
2. P_2 and P_3 are strongly invariant for U.

For an evolution operator $U : \Delta \to B(X)$ and \mathcal{P} compatible with U, we will denote by $V_2(t, s)$ and $V_3(t, s)$ the skew-evolution operators associated to the pairs (U, P_2) and (U, P_3).

3 (h,k)-trichotomy

Let $h, k : \mathbb{R}^+ \to [1, \infty)$ be two increasing functions and (U, \mathcal{P}) a trichotomic pair.

Definition 3.1 We say that the pair (U, \mathcal{P}) is (h,k)-trichotomic and denote $(h, k) - t$, if there are the constants $N \geq 1, a > 0, b \geq 0, c > 0$ such that:

1. $h(t)^a \|U(t, s)P_1(s)x\| \leq Nh(s)^a k(s)^b \|P_1(s)x\|$;
2. $h(t)^a \|P_2(s)x\| \leq Nh(s)^a k(t)^b \|U(t, s)P_2(s)x\|$;
3. $h(s)^c \|U(t, s)P_3(s)x\| \leq Nh(t)^c k(s)^b \|P_3(s)x\|$;
4. $h(s)^c \|P_3(s)x\| \leq Nh(t)^c k(t)^b \|U(t, s)P_3(s)x\|$,

for all $(t, s, x) \in \Delta \times X$.

Remark 3.1 As particular cases of (h,k)-trichotomy we remark that

1. if $h(t) = k(t) = e^t$, then we recover the notion of nonuniform exponential trichotomy and in particular when the function k is constant (or $b = 0$) we obtain the classical notion of uniform exponential trichotomy.
2. if $h(t) = k(t) = t + 1$, then we recover the notion of nonuniform polynomial trichotomy and in particular when the function k is constant (or $b = 0$) we obtain the classical notion of uniform polynomial trichotomy.
(iii) if \(P_3 = 0 \) in Definition 3.1, then we recover the notion of \((h,k)\)-dichotomy.

(iv) if \(h(t) = k(t) = e^t \) and \(P_3 = 0 \) then we recover the notion of nonuniform exponential dichotomy and in particular when the function \(k \) is constant (or \(b = 0 \)) we obtain the classical notion of uniform exponential dichotomy.

(v) if \(h(t) = k(t) = t + 1 \) and \(P_3 = 0 \), then we recover the notion of nonuniform polynomial dichotomy and in particular when the function \(k \) is constant (or \(b = 0 \)) we obtain the classical notion of uniform polynomial dichotomy.

An example of a trichotomic pair \((U, P)\) which is \((h,k)\)-trichotomic is given below.

Example 3.1 On \(X = \mathbb{R}^3 \) endowed with the norm

\[
\| (x_1, x_2, x_3) \| = \max \{ |x_1|, |x_2|, |x_3| \}.
\]

We consider the families of projection \(P_1, P_2, P_3 : \mathbb{R}_+ \rightarrow \mathcal{B}(X) \) defined by

\[
P_1(t)(x_1, x_2, x_3) = (x_1, 0, 0)
\]
\[
P_2(t)(x_1, x_2, x_3) = (0, x_2, 0)
\]
\[
P_3(t)(x_1, x_2, x_3) = (0, 0, x_3)
\]

for every \(t \geq 0 \) and \(x = (x_1, x_2, x_3) \in \mathbb{R}^3 \). Given the increasing functions \(h, k : \mathbb{R}_+ \rightarrow [1, \infty) \) we consider the evolution operator \(U : \Delta \rightarrow \mathcal{B}(X) \) defined by

\[
U(t,s)(x_1, x_2, x_3) = \left(\frac{k(s)}{k(t)}, \left(\frac{h(s)}{h(t)} \right)^2 x_1, \frac{k(t)}{k(s)}, \left(\frac{h(t)}{h(s)} \right)^2 x_2, \frac{h(s)}{h(t)} x_3 \right)
\]

So

\[
U(t,s) = \frac{k(s)}{k(t)} \cdot \left(\frac{h(s)}{h(t)} \right)^2 P_1(s) + \frac{k(t)}{k(s)} \cdot \left(\frac{h(t)}{h(s)} \right)^2 P_2(s) + \frac{h(s)}{h(t)} P_3(s)
\]
and hence

\begin{align*}
 h(t)^2\|U(t, s)P_1(s)x\| &= \frac{k(s)}{k(t)} \cdot h(s)^2\|P_1(s)x\| \leq k(s) \cdot h(s)^2\|P_1(s)x\|, \\
 h(t)^2\|P_2(s)x\| &= \frac{k(s)}{k(t)} \cdot h(s)^2\|U(t, s)P_2(s)x\| \leq k(t)h(s)^2\|U(t, s)P_2(s)x\|, \\
 h(s)\|U(t, s)P_3(s)x\| &= \frac{h(s)^2}{h(t)}\|P_3(s)x\| \leq h(s)\|P_3(s)x\| \leq h(t)k(s)\|P_3(s)x\|, \\
 h(s)\|P_3(s)x\| &= h(t)\|U(t, s)P_3(s)x\| \leq h(t)k(t)\|U(t, s)P_3(s)x\|,
\end{align*}

for all \((t, s, x) \in \Delta \times X\).

So for all \((h, k)\) there exists an evolution operator \(U\) such that \(U\) is \((h, k)\)-trichotomic.

A first characterization of \((h, k)\)-trichotomy is given by

Theorem 3.1 The trichotomic pair \((U, P)\) is \((h, k)\)-trichotomic if and only if there are \(N \geq 1, a > 0, b \geq 0, c > 0\)

\begin{align*}
 (t'_1) \quad h(t)^a\|U(t, t_0)P_1(t_0)x_0\| &\leq Nh(s)^a k(s)^b\|U(s, t_0)P_1(t_0)x_0\|; \\
 (t'_2) \quad h(t)^a\|U(t_0, t_0)P_2(t_0)x_0\| &\leq Nh(s)^a k(t)^b\|U(t, t_0)P_2(t_0)x_0\|; \\
 (t'_3) \quad h(s)^c\|U(t, t_0)P_3(t_0)x_0\| &\leq Nh(t)^c k(s)^b\|U(s, t_0)P_3(t_0)x_0\|; \\
 (t'_4) \quad h(s)^c\|U(t_0, t_0)P_3(t_0)x_0\| &\leq Nh(t)^c k(t)^b\|U(t, t_0)P_3(t_0)x_0\|,
\end{align*}

for all \(t \geq s \geq t_0 \geq 0\) and \(x_0 \in X\).

Proof. Necessity.
\((t_1) \Rightarrow (t'_1) \) If we suppose that \((t_1) \) holds then
\[
 h(t)^a\|U(t, t_0)P_1(t_0)x_0\| = h(t)^a\|U(t, s)P_1(s)U(s, t_0)P_1(t_0)x_0\| \leq \]
\[
 \leq Nh(s)^a k(s)^b \|P_1(s)U(s, t_0)P_1(t_0)x_0\| = \]
\[
 = Nh(s)^a k(s)^b \|U(s, t_0)P_1(t_0)x_0\|,
\]
for all \((t, s, t_0, x_0) \in \mathbb{R}_+^3 \times X \) with \(t \geq s \geq t_0 \).

\((t_2) \Rightarrow (t'_2) \) From \((t_2) \) it follows
\[
 h(t)^a\|U(s, t_0)P_2(t_0)x_0\| = h(t)^a\|P_2(s)U(s, t_0)P_2(t_0)x_0\| \leq \]
\[
 \leq Nh(s)^a k(t)^b \|U(t, s)P_2(s)U(s, t_0)P_2(t_0)x_0\| = \]
\[
 = Nh(s)^a k(t)^b \|U(t, t_0)P_2(t_0)x_0\|,
\]
and hence \((t'_2) \) is verified.

\((t_3) \Rightarrow (t'_3) \) By \((t_3) \) we have
\[
 h(s)^c\|U(t, t_0)P_3(t_0)x_0\| = h(s)^c\|U(t, s)P_3(s)U(s, t_0)P_3(t_0)x_0\| \leq \]
\[
 \leq Nh(t)^c k(s)^b \|P_3(s)U(s, t_0)P_3(t_0)x_0\| = Nh(t)^c k(s)^b \|U(s, t_0)P_3(t_0)x_0\|,
\]
for all \(t \geq s \geq t_0 \geq 0 \) and all \(x_0 \in X \).

\((t_4) \Rightarrow (t'_4) \) The inequality \((t_4) \) implies
\[
 h(s)^c\|U(s, t_0)P_3(t_0)x_0\| = h(s)^c\|P_3(s)U(s, t_0)x_0\| \leq \]
\[
 \leq Nh(t)^c k(t)^b \|U(t, s)P_3(s)U(s, t_0)x_0\| = Nh(t)^c k(t)^b \|U(t, t_0)P_3(t_0)x_0\|,
\]
for all \(t \geq s \geq t_0 \) and \(x_0 \in X \), which shows that \((t'_4) \) holds.

Sufficiency. It is obvious, taking \(t_0 = s \) in \((t_i) \) with \(i \in \{1, 2, 3, 4\} \).

A characterization of \((h,k)\)-trichotomy in the particular case when the family \(\mathcal{P} \) is supplementary and compatible for \(U \) is given by

Theorem 3.2 If \(\mathcal{P} \) is a supplementary family of projections which is compatible for \(U \) then the pair \((U, \mathcal{P})\) is \((h,k)\)-trichotomic if and only if there exist \(N \geq 1, a > 0, b \geq 0, c > 0 \) such that:

\((t'_2) \) \(h(t)^a\|U(t, s)P_1(s)x\| \leq Nh(s)^a k(s)^b \|P_1(s)x\|; \)
\begin{align}
(t_2') \ h(t)^a\|V(t, s)P_2(t)x\| & \leq Nh(s)^a k(t)^b\|P_2(t)x\|; \\
(t_3') \ h(s)^c\|U(t, s)P_3(s)x\| & \leq Nh(t)^c k(s)^b\|P_3(s)x\|; \\
(t_4') \ h(s)^c\|V(t, s)P_3(t)x\| & \leq Nh(t)^c k(t)^b\|P_3(t)x\|,
\end{align}
for all \((t, s, x) \in \Delta \times X\).

Proof. It is sufficient to prove the equivalences \((t_2) \Leftrightarrow (t_2')\) and \((t_4) \Leftrightarrow (t_4')\).

Necessity.

\((t_2) \Rightarrow (t_2')\) By \((t_2)\) we have
\[
h(t)^a\|V(t, s)P_2(t)x\| = h(t)^a\|P_2(s)\|\|V(t, s)P_2(t)x\| \leq Nh(s)^a k(t)^b\|P_2(t)x\|,
\]
and hence \((t_2')\) holds.

\((t_4) \Rightarrow (t_4')\) From \((t_4)\) we have
\[
h(s)^c\|V(t, s)P_3(t)x\| = h(s)^c\|P_3(s)\|\|V(t, s)P_3(t)x\| \leq Nh(t)^a k(t)^b\|U(t, s)P_3(s)V(t, s)P_3(t)x\| = Nh(t)^a k(t)^b\|P_3(t)x\|,
\]
for all \((t, s, x) \in \Delta \times X\) and hence \((t_4')\) is proved.

Sufficiency.

\((t_2') \Rightarrow (t_2)\) If we suppose \((t_2')\) then
\[
h(t)^a\|P_2(s)x\| = h(t)^a\|V(t, s)U(t, s)P_2(s)x\| \leq Nh(s)^a k(t)^b\|U(t, s)P_2(s)x\|
\]
and hence \((t_2)\) is proved.

\((t_4') \Rightarrow (t_4)\) By \((t_4')\) it results
\[
h(s)^c\|P_3(s)x\| = h(s)^c\|V(t, s)U(t, s)P_3(s)x\| \leq Nh(t)^c k(t)^b\|U(t, s)P_3(s)x\|,
\]
for all \((t, s, x) \in \Delta \times X\) and hence \((t_4)\) holds.

\[\blacksquare\]
4 Strong (h,k)-trichotomy

Now we introduce a new concept of (h,k)-trichotomy.

Definition 4.1 Let $\mathcal{P} = \{P_1, P_2, P_3\}$ be a family of three supplementary projections which is compatible with the evolution operator $U : \Delta \to B(X)$. We say that the pair (U, \mathcal{P}) is strongly (h,k)-trichotomic and denote $s \sim (h,k) - t$, if there are $N \geq 1, a > 0, b \geq 0, c > 0$ such that for all $(t, s, x) \in \Delta \times X$ the following properties hold:

\[
\begin{align*}
(st_1) & \quad h(t)^a \|U(t, s)P_1(s)x\| \leq Nh(s)^a k(s)^b \|x\|; \\
(st_2) & \quad h(t)^a \|V(t, s)P_2(t)x\| \leq Nh(s)^a k(t)^b \|x\|; \\
(st_3) & \quad h(s)^c \|U(t, s)P_3(s)x\| \leq Nh(t)^c k(s)^b \|x\|; \\
(st_4) & \quad h(s)^c \|V(t, s)P_3(t)x\| \leq Nh(t)^c k(t)^b \|x\|.
\end{align*}
\]

Remark 4.1 If the function k is constant or $b = 0$ then we obtain the concept of strong h-trichotomy.

Remark 4.2 The pair (U, \mathcal{P}) is strongly (h,k)-trichotomic if and only if there are $N \geq 1, a > 0, b \geq 0, c > 0$ such that:

\[
\begin{align*}
(st'_1) & \quad h(t)^a \|U(t, s)P_1(s)\| \leq Nh(s)^a k(s)^b; \\
(st'_2) & \quad h(t)^a \|V(t, s)P_2(t)\| \leq Nh(s)^a k(t)^b; \\
(st'_3) & \quad h(s)^c \|U(t, s)P_3(s)\| \leq Nh(t)^c k(s)^b; \\
(st'_4) & \quad h(s)^c \|V(t, s)P_3(t)\| \leq Nh(t)^c k(t)^b \quad \text{for all } (t, s) \in \Delta.
\end{align*}
\]

Definition 4.2 A family of projections $\mathcal{P} = \{P_1, P_2, P_3\}$ is called k-bounded if there exists $M \geq 1$ and $d \geq 0$ such that

\[
\|P_j(t)\| \leq Mk(t)^d,
\]

for all $t \geq 0$ and all $j \in \{1, 2, 3\}$.
Remark 4.3 If the pair (U, P) is strongly (h, k)-trichotomic then P is k-bounded.

Remark 4.4 If the pair (U, P) is strongly (h, k)-trichotomic then it is (h, k)-trichotomic.

Proof. Indeed, if we substitute x with $P_1(s)x$ in (st_1), x with $P_2(t)x$ in (st_2), x with $P_3(s)x$ in (st_3) respectively x with $P_3(t)x$ in (st_4) then we obtain that the conditions $(t_1), (t_2), (t_3)$ and (t_4) are satisfied.

Example 4.1 On $X = \mathbb{R}^3$ endowed with the norm

$$\|(x_1, x_2, x_3)\| = \max\{|x_1|, |x_2|, |x_3|\}.$$

Let $h, k : \mathbb{R}_+ \to [1, \infty)$ be two increasing functions.

We consider the families of projections give by $P = \{P_1, P_2, P_3\}$ with $P_1, P_2, P_3 : \mathbb{R}_+ \to B(X)$ defined by

$$P_1(t)(x_1, x_2, x_3) = (x_1 + e^{k_2(t)}x_2, 0, 0)$$

$$P_2(t)(x_1, x_2, x_3) = (-e^{k_2(t)}x_2, x_2, 0)$$

$$P_3(t)(x_1, x_2, x_3) = (0, 0, x_3)$$

for every $t \geq 0$ and $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

Consider the evolution operator $U : \Delta \to B(X)$ defined, for all $(t, s) \in \Delta$ by

$$U(t, s) = \frac{h(s)}{h(t)}P_1(s) + \frac{h(t)}{h(s)}P_2(t) + \frac{h(s)}{h(t)}P_3(s)$$

We have that,

$$h(t)\|U(t, s)P_1(s)x\| = h(s)\|P_1(s)x\| \leq k(s)h(s)\|P_1(s)x\|,$$

$$h(t)\|P_2(s)x\| \leq h(s)\|U(t, s)P_2(s)x\| \leq k(t)h(s)\|U(t, s)P_2(s)x\|,$$

$$h(s)\|U(t, s)P_3(s)x\| \leq h(s)\|P_3(s)x\| \leq h(t)k(s)\|P_3(s)x\|,$$
\[h(s)\| P_3(s)x \| = h(t)\| U(t, s)P_3(s)x \| \leq h(t)k(t)\| U(t, s)P_3(s)x \| , \]

for all \((t, s, x) \in \Delta \times X\).

So \((U, P)\) is \((h, k)\)-trichotomic.

We observe that
\[\| P_1(t)(0, 1, 0) \| = e^{k^2(t)} \]
and by on Remark 4.3 it results that \((U, P)\) cannot be strongly \((h, k)\)-trichotomic.

Remark 4.5 The previous example shows that for every two increasing functions \(h, k : \mathbb{R}_+ \rightarrow [1, \infty)\) there exists a family of supplementary projections \(P = \{P_1, P_2, P_3\}\) and an evolution operator \(U\) such that

(i) \(P\) is compatible with \(U\);
(ii) \((U, P)\) is \((h, k)\) - trichotomic;
(iii) \((U, P)\) is not strongly \((h, k)\) - trichotomic.

5 Weak \((h,k)\)-trichotomy

We introduce a new concept of \((h,k)\)-trichotomy.

Definition 5.1 Let \(P = \{P_1, P_2, P_3\}\) be a family of three supplementary projections which is compatible with the evolution operator \(U : \Delta \rightarrow B(X)\). We say that the pair \((U, P)\) is weakly \((h,k)\)-trichotomic and denote \(w \quad (h,k)\) - trichotomic if there are \(N \geq 1, a > 0, b \geq 0, c > 0\) such that for all \((t, s) \in \Delta\) the following properties hold:

\[(wt_1) \quad h(t)^a\| U(t, s)P_1(s) \| \leq Nh(s)^a k(s)^b\| P_1(s) \| ; \]
\[(wt_2) \quad h(t)^a\| V(t, s)P_2(t) \| \leq Nh(s)^a k(t)^b\| P_2(t) \| ; \]
\[(wt_3) \quad h(s)^c\| U(t, s)P_3(s) \| \leq Nh(t)^c k(s)^b\| P_3(s) \| ; \]
\[(wt_4) \quad h(s)^c\| V(t, s)P_3(t) \| \leq Nh(t)^c k(t)^b\| P_3(t) \|. \]

Remark 5.1 If the pair \((U, P)\) is \((h,k)\)-trichotomic then it is weakly \((h,k)\)-trichotomic.
Remark 5.2 The connections between the trichotomy concepts considered in this paper are

\[s - (h, t) - t \implies (h, k) - t \implies w - (h, k) - t \]

Remark 5.3 If \(\mathcal{P} = \{P_1, P_2, P_3\} \) is \(k \)-bounded then \(w - (h, k) - t \) implies \(s - (h, k) - t \).

A particular case when the trichotomy concepts considered in this paper are equivalent is given by

Remark 5.4 Let \(\mathcal{P} = \{P_1, P_2, P_3\} \) be a family of three supplementary projections which is \(k \)-bounded and compatible with the evolution operator \(U : \Delta \to \mathcal{B}(X) \). Then the following statements are equivalent:

(i) \((U, \mathcal{P}) \) is strongly \((h,k)\)-trichotomic;

(ii) \((U, \mathcal{P}) \) is \((h,k)\)-trichotomic;

(iii) \((U, \mathcal{P}) \) is weakly \((h,k)\)-trichotomic.

Proof. By Remark 5.2, we have to prove that \(w - (h, k) - t \) implies \(s - (h, k) - t \). Let \(N \geq 1, a > 0, b \geq 0, c > 0 \) given by the \(w - (h, k) - t \) property and let \(M \geq 1, d \geq 0 \) be such that

\[\|P_i(t)\| \leq Mk(t)^{d}, \]

for every \(t \geq 0 \) and \(i \in \{1, 2, 3\} \).

The conclusion follows from the bellow estimations:

- \[h(t)^a \|U(t, s)P_1(s)\| \leq Nh(s)^a k(s)^b \|P_1(s)\| \leq MNh(s)^a k(s)^{b+d}, \]
- \[h(t)^a \|V(t, s)P_2(t)\| \leq Nh(s)^a k(t)^b \|P_2(t)\| \leq MNh(s)^a k(t)^{b+d}, \]
- \[h(s)^c \|U(t, s)P_3(s)\| \leq Nh(t)^c k(s)^b \|P_3(s)\| \leq MNh(t)^c k(s)^{b+d}, \]
- \[h(s)^c \|V(t, s)P_3(t)\| \leq Nh(t)^c k(t)^b \|P_3(t)\| \leq MNh(t)^c k(t)^{b+d}, \]

for all \(t \geq s \geq 0 \).
References

